Survival Analysis with R: Cheat Sheet

Packages

The dplyr, survival, and survminer packages from CRAN are required for this lesson. For looking at TCGA data, you’ll also
need RTCGA, RTCGA.clinical, and RTCGA.mRNA from Bioconductor. Here’s how to install them (do this once).

Install from CRAN ---—-——————————————————————
install.packages("dplyr")
install.packages("survminer")

Install from Bioconductor —————————————————=
Install Bioconductor core packages first
source ("http://bioconductor.org/biocLite.R")
biocLite()

Next install RTCGA and RTCGA data packages
biocLite ("RTCGA")

biocLite ("RTCGA.clinical")

biocLite ("RTCGA.mRNA")

After installing these packages, load them in each session you use them.

CRAN Packages needed

library(dplyr) # loads dplyr

library(survival) # core survival analysis functions
library(survminer) # recommended for wvisualizing survival curves

Bioconductor packages
library (RTCGA)
library(RTCGA.clinical)
library (RTCGA.mRNA)

Functions

Function Description

head(df) ; tail(df)

View(df)

filter(df, ..,)

Surv(df$time, df$event)

survfit (Surv(time, status)~x, data=df)
summary (sfit, times=c(0,10,50))
survdiff (Surv(time, status)~x, data=df)
coxph(Surv(time, status)~x1+x2, data=df)
tidy) ; augment () ; glance()
survivalTCGA(..., extract.cols=...)
expressionsTCGA(..., extract.cols=...)

Print first and last few rows of data frame df

View tabular data frame df in a graphical viewer

Filters data according to condition ... (dplyr)

Creates a survival object w/ right-censored data

Creates a survival curve against variable x

Shows life table for sfit object at specified times
Log-rank test of differential survival by groups in x

Run a Cox PH model on variables x1 and x2

Model tidying functions in the broom package

Extract survival data from 1+ (R)TCGA clinical datasets
Extract gene expression data (R)TCGA mRNA datasets

The pipe: %>%

When you load the dplyr package you can use %>%, the pipe. Running x %>% f(args) is the same as f(x, args). If you
wanted to run function f () on data x, then run function g() on that, then run function h() on that result: instead of nesting
multiple functions, h(g(£(x))), it’s preferable and more readable to create a chain or pipeline of functions: x %>% £ %>% g %»>%
h. Pipelines can be spread across multiple lines, with each line ending in %>% until the pipeline terminates. The keyboard shortcut
for inserting %>% is Cmd+Shift+M on Mac, Ctrl4-Shift+M on Windows.

	Packages
	Functions
	The pipe: %>%

